545 research outputs found

    Oligonucleotide properties determination and primer designing: a critical examination of predictions

    Get PDF
    Motivation: Precise prediction of melting temperature (Tm), secondary structures and design of oligonucleotides determine the efficiency and success of experimentation in molecular biology. Availability of a plethora of software and the users unawareness about their limitations compromises the accuracy and reliability of the predictions. Results: Comparative analysis of 56 modules was done for Tm prediction using a large set of oligonucleotide sequences spanning the whole range of GC-content and length. Allawi module of the calculator ‘MELTING’, Nearest Neighbor (NN) of oligo calculator (McLab), NN of Tm Calculation for Oligos (Biomath Calculator, Promega) and HYTHER provided the most precise Tm predictions. A model has also been proposed to calculate the optimum annealing temperature integrating the already reported formulations. Secondary structure predictions of oligonucleotides reveal a large number of structures in contrast to the experimental observations. Of the 11 primer designing tools evaluated, Primer 3 and WebPrimer performed the best for the AT-rich templates, Exon Primer for AT = GC templates, and Primer Design Assistant, Primer3 and Primer Quest for GC-rich templates. This study provides optimal choice for application to the user, increasing the success of a variety of experimentations, especially those that have high-throughput and complex assay designs

    Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls

    Get PDF
    Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P

    Estimation of the population mean using paired ranked set sampling

    Get PDF
    In the situation where the sampling units in a study can be easily ranked than quantified, the ranked set sampling methods are found to be more efficient and cost effective as compared to SRS. In this paper we propose an estimator of the population mean using paired ranked set sampling (RSS) method. The proposed estimator is an unbiased estimator of the population mean when the set size is even. In case of odd set size the estimator is unbiased when the underlying distribution is symmetric. It is shown that the proposed estimator is more efficient than its counterpart SRS method for all distributions considered in this study

    Sequence data and association statistics from 12,940 type 2 diabetes cases and controls

    Get PDF
    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (\u3e80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D

    Anti-Müllerian Hormone and Cardiometabolic Disease in Women:A Two-Sample Mendelian Randomization Study

    Get PDF
    Background: Higher age-specific circulating anti-Müllerian hormone (AMH) levels have been linked to a lower risk of cardiometabolic outcomes. However, whether AMH has a casual role in the etiology of these diseases is unknown. The objective of this study was therefore to explore if circulating AMH levels have a causal effect on risk of coronary artery disease (CAD), ischemic stroke and type 2 diabetes (T2D) in women, using a two-sample Mendelian randomization (MR) approach. Methods: We used four single nucleotide polymorphisms (SNPs) from the most recent AMH GWAS meta-analysis as instrumental variables. Summary-level data for CAD (n = 149,752; 11,802 cases), ischemic stroke (n = 17,541; 4678 cases) and T2D (n = 464,389; 30,052 cases) were extracted from the UK Biobank, the Stroke Genetics Network, and DIAMANTE consortia, respectively. To assess the presence of potential pleiotropy we tested the association of the four AMH SNPs, both individually and combined in a weighted genetic risk score, with a range of cardiovascular risk factors and intermediate traits using UK Biobank data. Results: MR estimates, i.e., inverse variance-weighted odds ratios (ORIVW), did not support a causal effect of circulating AMH levels on CAD (ORIVW = 1.13, 95% CI: 0.95–1.35), ischemic stroke (ORIVW = 1.11, 95% CI: 0.83–1.49), and T2D (ORIVW = 0.98, 95% CI: 0.87–1.10). After adjustment for multiple testing, we observed associations between genetically predicted AMH and age at menopause, and age at menarche, but not with intermediate traits on the causal pathway between AMH and cardiometabolic health, such as atherosclerosis or glucose levels. Conclusions: This study does not provide evidence for a causal effect of circulating AMH levels on CAD, ischemic stroke and T2D in women, although weak instrument bias cannot be excluded
    corecore